博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
OGRE 阴影技术官方文档
阅读量:7235 次
发布时间:2019-06-29

本文共 19897 字,大约阅读时间需要 66 分钟。

转自

Shadow Mapping in Ogre

Hamilton Chong
Aug 2006

 

 

 

 

3.3 Projective versus Perspective Aliasing

The terms perspective and projective aliasing appeared in the Perspective ShadowMaps
[8] paper and has since been used extensively by those who work on improving shadow
heuristics. Often it is claimed that methods ameliorate perspective aliasing while projective
aliasing is either unavoidable or must be addressed via completely separate
means. However, the distinction between the two is somewhat artificial. Both result
from not allocating enough shadow map samples to regions that matter to the viewer.
As the Plane Optimal algorithm demonstrates, it is possible to completely remove projective
aliasing (as well as perspective aliasing) in certain scenes. In general, there
should be one combined measure of aliasing and algorithms must minimize this quantity.
See [2] for a unified notion of aliasing.
4 Implementation
Ogre provides a powerful framework that allows us to do a lot of shadow map customization.
In Ogre, we turn on custom shadow mapping through the scene manager
(here, sceneMgr). It is recommended that this happen early as it may affect how certain
resources are loaded.

// Use Ogre’s custom shadow mapping abilitysceneMgr->setShadowTexturePixelFormat(PF_FLOAT32_R);sceneMgr->setShadowTechnique( SHADOWTYPE_TEXTURE_ADDITIVE );sceneMgr->setShadowTextureCasterMaterial("CustomShadows/ShadowCaster");sceneMgr->setShadowTextureReceiverMaterial("CustomShadows/ShadowReceiver");sceneMgr->setShadowTextureSelfShadow(true);sceneMgr->setShadowTextureSize(512);

 

The setShadowTechnique call is all that is required for Ogre’s default shadow mapping.

In the code above, we have told Ogre to use the R channel of a floating point
texture to store depth values. This tends to be a very portable method (over graphics
cards and APIs). The sample sticks to using Ogre’s default of 512x512 shadow maps.
Self-shadowing is turned on, but be warned that this will only work properly if appropriate
depth biasing is also used. The example code will manually account for depth
biasing via the method described above in section 1.2. The shadow caster and shadow
receiver materials are defined in a materials script. They tell Ogre which shaders to use
when rendering shadow casters into the shadow map and rendering shadow receivers
during shadow determination.
The CustomShadows.material material script is given below:

// Shadow Caster __________________________________________________vertex_program CustomShadows/ShadowCasterVP/Cg cg{source customshadowcastervp.cg8entry_point mainprofiles arbvp1 vs_2_0default_params{param_named_auto uModelViewProjection worldviewproj_matrix}}fragment_program CustomShadows/ShadowCasterFP/Cg cg{source customshadowcasterfp.cgentry_point mainprofiles arbfp1 ps_2_0default_params{param_named uDepthOffset float 1.0param_named uSTexWidth float 512.0param_named uSTexHeight float 512.0param_named_auto uInvModelViewProjection inverse_worldviewproj_matrixparam_named_auto uProjection projection_matrix}}vertex_program CustomShadows/ShadowCasterVP/GLSL glsl{source customshadowcastervp.vertdefault_params{param_named_auto uModelViewProjection worldviewproj_matrix}}fragment_program CustomShadows/ShadowCasterFP/GLSL glsl{source customshadowcasterfp.fragdefault_params{param_named uDepthOffset float 1.0param_named uSTexWidth float 512.0param_named uSTexHeight float 512.0param_named_auto uInvModelViewProjection inverse_worldviewproj_matrixparam_named_auto uProjection projection_matrix9}}vertex_program CustomShadows/ShadowCasterVP/HLSL hlsl{source customshadowcastervp.hlslentry_point maintarget vs_2_0default_params{param_named_auto uModelViewProjection worldviewproj_matrix}}fragment_program CustomShadows/ShadowCasterFP/HLSL hlsl{source customshadowcasterfp.hlslentry_point maintarget ps_2_0default_params{param_named uDepthOffset float 1.0param_named uSTexWidth float 512.0param_named uSTexHeight float 512.0param_named_auto uInvModelViewProjection inverse_worldviewproj_matrixparam_named_auto uProjection projection_matrix}}material CustomShadows/ShadowCaster{technique glsl{// Z-write only passpass Z-write{vertex_program_ref CustomShadows/ShadowCasterVP/GLSL{}fragment_program_ref CustomShadows/ShadowCasterFP/GLSL{}}}10technique hlsl{// Z-write only passpass Z-write{//Instead of using depth_bias, we’ll be implementing it manuallyvertex_program_ref CustomShadows/ShadowCasterVP/HLSL{}fragment_program_ref CustomShadows/ShadowCasterFP/HLSL{}}}technique cg{// Z-write only passpass Z-write{//Instead of using depth_bias, we’ll be implementing it manuallyvertex_program_ref CustomShadows/ShadowCasterVP/Cg{}fragment_program_ref CustomShadows/ShadowCasterFP/Cg{}}}}// Shadow Receiver ________________________________________________vertex_program CustomShadows/ShadowReceiverVP/Cg cg{source customshadowreceivervp.cgentry_point mainprofiles arbvp1 vs_2_0default_params{11param_named_auto uModelViewProjection worldviewproj_matrixparam_named_auto uLightPosition light_position_object_space 0param_named_auto uModel world_matrixparam_named_auto uTextureViewProjection texture_viewproj_matrix}}fragment_program CustomShadows/ShadowReceiverFP/Cg cg{source customshadowreceiverfp.cgentry_point mainprofiles arbfp1 ps_2_xdefault_params{param_named uSTexWidth float 512.0param_named uSTexHeight float 512.0}}vertex_program CustomShadows/ShadowReceiverVP/GLSL glsl{source customshadowreceiver.vertdefault_params{param_named_auto uModelViewProjection worldviewproj_matrixparam_named_auto uLightPosition light_position_object_space 0param_named_auto uModel world_matrixparam_named_auto uTextureViewProjection texture_viewproj_matrix}}fragment_program CustomShadows/ShadowReceiverFP/GLSL glsl{source customshadowreceiver.fragdefault_params{param_named uSTexWidth float 512.0param_named uSTexHeight float 512.0}}vertex_program CustomShadows/ShadowReceiverVP/HLSL hlsl{12source customshadowreceivervp.hlslentry_point maintarget vs_2_0default_params{param_named_auto uModelViewProjection worldviewproj_matrixparam_named_auto uLightPosition light_position_object_space 0param_named_auto uModel world_matrixparam_named_auto uTextureViewProjection texture_viewproj_matrix}}fragment_program CustomShadows/ShadowReceiverFP/HLSL hlsl{source customshadowreceiverfp.hlslentry_point maintarget ps_3_0default_params{param_named uSTexWidth float 512.0param_named uSTexHeight float 512.0}}material CustomShadows/ShadowReceiver{technique glsl{pass lighting{vertex_program_ref CustomShadows/ShadowReceiverVP/GLSL{}fragment_program_ref CustomShadows/ShadowReceiverFP/GLSL{param_named uShadowMap int 0}texture_unit ShadowMap{tex_address_mode clampfiltering none}13}}technique hlsl{pass lighting{vertex_program_ref CustomShadows/ShadowReceiverVP/HLSL{}fragment_program_ref CustomShadows/ShadowReceiverFP/HLSL{}// we won’t rely on hardware specific filtering of z-teststexture_unit ShadowMap{tex_address_mode clampfiltering none}}}technique cg{pass lighting{vertex_program_ref CustomShadows/ShadowReceiverVP/Cg{}fragment_program_ref CustomShadows/ShadowReceiverFP/Cg{}// we won’t rely on hardware specific filtering of z-teststexture_unit ShadowMap{tex_address_mode clampfiltering none}}}}14Three techniques are presented, one for GLSL, one for HLSL, and one for Cg.We’ll present the GLSL code below. Note that while most of the shader files are directtranslations of each other, DirectX HLSL shaders must handle percentage closestfiltering slightly differently from OpenGL. OpenGL chooses the convention of havingintegers index sample centers whereas DirectX chooses integers to index sample corners.Also note the variable names in the shaders presented below are slightly differentfrom those presented earlier in this document. This is due in part to the awkwardnessof expressing subscripts in variable names and also in part because u3 is less evocativeof depth than z, etc. With minimal effort one can match the shader equations withthose presented earlier. The code is presented here mostly to demonstrate how thingsfit together.////// shadowcastervp.vert//// This is an example vertex shader for shadow caster objects.////// I N P U T V A R I A B L E S /uniform mat4 uModelViewProjection; // modelview projection matrix// O U T P U T V A R I A B L E S ///varying vec4 pPosition; // post projection position coordinatesvarying vec4 pNormal; // normal in object space (to be interpolated)varying vec4 pModelPos; // position in object space (to be interpolated)// M A I N ///void main(){// Transform vertex position into post projective (homogenous screen) space.gl_Position = uModelViewProjection * gl_Vertex;pPosition = uModelViewProjection * gl_Vertex;// copy over data to interpolate using perspective correct interpolationpNormal = vec4(gl_Normal.x, gl_Normal.y, gl_Normal.z, 0.0);pModelPos = gl_Vertex;}This is a pretty standard vertex shader./15//// shadowcasterfp.frag//// This is an example fragment shader for shadow caster objects.///// I N P U T V A R I A B L E S // uniform constantsuniform float uDepthOffset; // offset amount (constant in eye space)uniform float uSTexWidth; // shadow map texture widthuniform float uSTexHeight; // shadow map texture heightuniform mat4 uInvModelViewProjection;// inverse model-view-projection matrixuniform mat4 uProjection; // projection matrix// per fragment inputsvarying vec4 pPosition; // position of fragment (in homogeneous coordinates)varying vec4 pNormal; // un-normalized normal in object spacevarying vec4 pModelPos; // coordinates of model in object space at this point// M A I N //void main(void){// compute the "normalized device coordinates" (no viewport applied yet)vec4 postProj = pPosition / pPosition.w;// get the normalized normal of the geometry seen at this pointvec4 normal = normalize(pNormal);// -- Computing Depth Bias Quantities -----------------------------// We want to compute the "depth slope" of the polygon.// This is the change in z value that accompanies a change in x or y on screen// such that the coordinates stay on the triangle.// The depth slope, dzlen below, is a measure of the uncertainty in our z value// Roughly, these equations come from re-arrangement of the product rule:// d(uq) = d(u)q + u d(q) --> d(u) = 1/q * (d(uq) - u d(q))vec4 duqdx = uInvModelViewProjection * vec4(1.0/uSTexWidth,0.0,0.0,0.0);vec4 dudx = pPosition.w * (duqdx - (pModelPos * duqdx.w));vec4 duqdy = uInvModelViewProjection * vec4(0.0,1.0/uSTexHeight,0.0,0.0);vec4 dudy = pPosition.w * (duqdy - (pModelPos * duqdy.w));vec4 duqdz = uInvModelViewProjection * vec4(0.0,0.0,1.0,0.0);16vec4 dudz = pPosition.w * (duqdz - (pModelPos * duqdz.w));// The next relations come from the requirement dot(normal, displacement) = 0float denom = 1.0 / dot(normal.xyz, dudz.xyz);vec2 dz = - vec2( dot(normal.xyz, dudx.xyz) * denom ,dot(normal.xyz, dudy.xyz) * denom );float dzlen = max(abs(dz.x), abs(dz.y));// We now compute the change in z that would signify a push in the z direction// by 1 unit in eye space. Note that eye space z is related in a nonlinear way to// screen space z, so this is not just a constant.// ddepth below is how much screen space z at this point would change for that push.// NOTE: computation of ddepth likely differs from OpenGL’s glPolygonOffset "unit"// computation, which is allowed to be vendor specific.vec4 dpwdz = uProjection * vec4(0.0, 0.0, 1.0, 0.0);vec4 dpdz = (dpwdz - (postProj * dpwdz.w)) / pPosition.w;float ddepth = abs(dpdz.z);// -- End depth bias helper section --------------------------------// We now compute the depth of the fragment. This is the actual depth value plus// our depth bias. The depth bias depends on how uncertain we are about the z value// plus some constant push in the z direction. The exact coefficients to use are// up to you, but at least it should be somewhat intuitive now what the tradeoffs are.float depthval = postProj.z + (0.5 * dzlen)+ (uDepthOffset * ddepth);depthval = (0.5 * depthval) + 0.5; // put into [0,1] range instead of [-1,1]gl_FragColor = vec4(depthval, depthval, depthval, 0.0);}This shader computes the two depth bias pieces described in section 1.2. These areused to offset the stored depth value. This is where the notation differs from above, butthe translation is quite straightforward.////// shadowreceiver.vert////// I N P U T V A R I A B L E S /uniform mat4 uModelViewProjection; // modelview projection matrixuniform mat4 uModel; // model matrixuniform mat4 uTextureViewProjection; // shadow map’s view projection matrix17uniform vec4 uLightPosition; // light position in object space// O U T P U T V A R I A B L E S ///varying vec4 pShadowCoord; // vertex position in shadow map coordinatesvarying float pDiffuse; // diffuse shading value// M A I N ///void main(){// compute diffuse shadingvec3 lightDirection = normalize(uLightPosition.xyz - gl_Vertex.xyz);pDiffuse = dot(gl_Normal.xyz, lightDirection);// compute shadow map lookup coordinatespShadowCoord = uTextureViewProjection * (uModel * gl_Vertex);// compute vertex’s homogenous screen-space coordinates// Use following line if other passes use shaders//gl_Position = uModelViewProjection * gl_Vertex;gl_Position = ftransform(); // uncomment if other passes use fixed function pipeline}This is a pretty standard vertex shader as well. The ftransform() function guaranteesthe output matches the fixed function pipeline. If the objects you render use shadersinstead of fixed function, then you should do so here as well.///// shadowreceiver.frag///// I N P U T V A R I A B L E S // uniform constantsuniform sampler2D uShadowMap;uniform float uSTexWidth;uniform float uSTexHeight;// per fragment inputsvarying vec4 pShadowCoord; // vertex position in shadow map coordinatesvarying float pDiffuse; // diffuse shading value18// M A I N //void main(void){// compute the shadow coordinates for texture lookup// NOTE: texture_viewproj_matrix maps z into [0,1] range, not [-1,1], so// have to make sure shadow caster stores depth values with same convention.vec4 scoord = pShadowCoord / pShadowCoord.w;// -- "Percentage Closest Filtering" -----------------------------------------// One could use scoord.xy to look up the shadow map for depth testing, but// we’ll be implementing a simple "percentage closest filtering" algorithm instead.// This mimics the behavior of turning on bilinear filtering on NVIDIA hardware// when also performing shadow comparisons. This causes bilinear filtering of// depth tests. Note that this is NOT the same as bilinear filtering the depth// values and then doing the depth comparison. The two operations are not// commutative. PCF is explicitly about filtering the test values since// testing filtered z values is often meaningless.// Real percentage closest filtering should sample from the entire footprint// on the shadow map, not just seek the closest four sample points. Such// an improvement is for future work.// NOTE: Assuming OpenGL convention for texture lookups with integers in centers.// DX convention is to have integers mark sample cornersvec2 tcoord;tcoord.x = (scoord.x * uSTexWidth) - 0.5;tcoord.y = (scoord.y * uSTexHeight) - 0.5;float x0 = floor(tcoord.x);float x1 = ceil(tcoord.x);float fracx = fract(tcoord.x);float y0 = floor(tcoord.y);float y1 = ceil(tcoord.y);float fracy = fract(tcoord.y);// sample coordinates in [0,1]^2 domainvec2 t00, t01, t10, t11;float invWidth = 1.0 / uSTexWidth;float invHeight = 1.0 / uSTexHeight;t00 = float2((x0+0.5) * invWidth, (y0+0.5) * invHeight);t10 = float2((x1+0.5) * invWidth, (y0+0.5) * invHeight);t01 = float2((x0+0.5) * invWidth, (y1+0.5) * invHeight);t11 = float2((x1+0.5) * invWidth, (y1+0.5) * invHeight);19// grab the samplesfloat z00 = texture2D(uShadowMap, t00).x;float viz00 = (z00 <= scoord.z) ? 0.0 : 1.0;float z01 = texture2D(uShadowMap, t01).x;float viz01 = (z01 <= scoord.z) ? 0.0 : 1.0;float z10 = texture2D(uShadowMap, t10).x;float viz10 = (z10 <= scoord.z) ? 0.0 : 1.0;float z11 = texture2D(uShadowMap, t11).x;float viz11 = (z11 <= scoord.z) ? 0.0 : 1.0;// determine that all geometry outside the shadow test frustum is litviz00 = ((abs(t00.x - 0.5) <= 0.5) && (abs(t00.y - 0.5) <= 0.5)) ? viz00 : 1.0;viz01 = ((abs(t01.x - 0.5) <= 0.5) && (abs(t01.y - 0.5) <= 0.5)) ? viz01 : 1.0;viz10 = ((abs(t10.x - 0.5) <= 0.5) && (abs(t10.y - 0.5) <= 0.5)) ? viz10 : 1.0;viz11 = ((abs(t11.x - 0.5) <= 0.5) && (abs(t11.y - 0.5) <= 0.5)) ? viz11 : 1.0;// bilinear filter test resultsfloat v0 = (1.0 - fracx) * viz00 + fracx * viz10;float v1 = (1.0 - fracx) * viz01 + fracx * viz11;float visibility = (1.0 - fracy) * v0 + fracy * v1;// ------------------------------------------------------------------------------// Non-PCF code (comment out above section and uncomment the following three lines)//float zvalue = texture2D(uShadowMap, scoord.xy).x;//float visibility = (zvalue <= scoord.z) ? 0.0 : 1.0;//visibility = ((abs(scoord.x - 0.5) <= 0.5) && (abs(scoord.y - 0.5) <= 0.5))// ? visibility : 1.0;// ------------------------------------------------------------------------------visibility *= pDiffuse;gl_FragColor = vec4(visibility, visibility, visibility, 0.0);}

 
This file implements percentage closest filtering. To use unfiltered shadow mapping,
comment out the PCF block as noted and uncomment the Non-PCF block. Note that
after doing this, the uSTexWidth and uSTexHeight variables are likely to be optimized
away and so you should uncomment these variables in the materials script as well.
The following shows how to activate plane optimal shadow mapping given some
pointer to a MovablePlane and a pointer to a light.

PlaneOptimalShadowCameraSetup *planeOptShadowCamera =new PlaneOptimalShadowCameraSetup(movablePlane);20Entity *movablePlaneEntity = sceneMgr->createEntity( "movablePlane", "plane.mesh" );SceneNode *movablePlaneNode =sceneMgr->getRootSceneNode()->createChildSceneNode("MovablePlaneNode");movablePlaneNode->attachObject(movablePlaneEntity);SharedPtr
planeOptPtr(planeOptShadowCamera);light->setCustomShadowCameraSetup(planeOptPtr);

 

References

[1] Hamilton Y. Chong and Steven J. Gortler. A lixel for every pixel. In Proceedings
of the Eurographics Symposium on Rendering. Eurographics Association, 2004.
[2] Hamilton Y. Chong and Steven J. Gortler. Scene optimized shadow maps. In
Harvard Technical Report TR-11-06, 2006.
[3] William Donnelly and Andrew Lauritzen. Variance shadow maps. In SI3D ’06:
Proceedings of the 2006 symposium on Interactive 3D graphics and games, pages
161–165, New York, NY, USA, 2006. ACM Press.
[4] Randima Fernando, Sebastian Fernandez, Kavita Bala, and Donald P. Greenberg.
Adaptive shadow maps. In SIGGRAPH ’01: Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques, pages 387–390, New
York, NY, USA, 2001. ACM Press.
[5] Tom Lokovic and Eric Veach. Deep shadow maps. In SIGGRAPH ’00: Proceed-
ings of the 27th annual conference on Computer graphics and interactive tech-
niques, New York, NY, USA, 2000. ACM Press.
[6] Tobias Martin and Tiow-Seng Tan. Anti-aliasing and continuity with trapezoidal
shadowmaps. In Proceedings of the Eurographics Symposium on Rendering, pages
153–160. Eurographics Association, 2004.
[7] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering antialiased
shadows with depth maps. In SIGGRAPH ’87: Proceedings of the 14th annual
conference on Computer graphics and interactive techniques, pages 283–291, New
York, NY, USA, 1987. ACM Press.
[8] Marc Stamminger and George Drettakis. Perspective shadow maps. In SIGGRAPH
’02: Proceedings of the 29th annual conference on Computer graphics and inter-
active techniques, pages 557–562, New York, NY, USA, 2002. ACM Press.
[9] Lance Williams. Casting curved shadows on curved surfaces. In SIGGRAPH ’78:
Proceedings of the 5th annual conference on Computer graphics and interactive
techniques, pages 270–274, New York, NY, USA, 1978. ACM Press.
21

作者:pizi0475 发表于2011-7-30 10:48:15
阅读:88 评论:0

转载地址:http://spofm.baihongyu.com/

你可能感兴趣的文章
APP三种开发模式
查看>>
solr入门之solr的拼写检查功能的应用级别尝试
查看>>
《分水岭:看清中国科技和互联网未来五年的趋势》出版 腾讯科技出品
查看>>
UIButton的图片和文字相对位置调整
查看>>
mark 百度Echarts统计图表
查看>>
Java多线程基础(二)
查看>>
eclipse中javadoc给项目生成api文档
查看>>
IOS UIPickView+sqlite 选择中国全部城市案例
查看>>
Cocos2d-x 3.0的启动流程
查看>>
ES6模板字面量
查看>>
使用SpannableString实现一个load小动画
查看>>
CSS高度自适应 height:100%;
查看>>
jboss规则引擎KIE Drools 6.3.0 Final 教程(1)
查看>>
网络传输乱码问题
查看>>
TP3.2:实现Ajax无刷新上传图片
查看>>
Java调整JVM内存大小——(八)
查看>>
java多线程异步执行
查看>>
Using an Image for the Layer’s Content
查看>>
LindAgile~缓存拦截器支持类的虚方法了
查看>>
原生JS实现各种经典网页特效——Banner图滚动、选项卡切换、广告弹窗等
查看>>